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Abstract

The aim of this paper is to present a damage assessment technique for the non-destructive detection and sizing of

multiple open cracks in beams. The constitutive relation error updating method is used for the identification of the location

and the size of multi-cracks in a simply supported beam.

The present identification method is illustrated through numerical examples including double and triple cracks.

Moreover, the efficiency and robustness of the proposed method is demonstrated through various numerical simulations in

regard to the non-dimensional crack depth and the crack location.

It is demonstrated that the constitutive relation error updating method can detect the number of cracks on the beam and

can estimate both the crack positions and sizes with satisfactory precision, even if 10% or 20% noise levels has been added

to the simulations, and only few degrees of freedom are used for the identification procedure.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that catastrophic mechanical structural failure may be caused by fatigue cracks. In order to
avoid failure caused by cracks, many researchers have performed extensive investigations and damage
assessment techniques based on vibration measurements. The damage assessment may be divided in a two-
phases approach: firstly the damage is located and then degree of damage is quantified. For example, Friswell
et al. [1] used an application of genetic algorithm to locate damage in a beam and in a cantilever plate
structure. After, the location of the crack, the crack depth is estimated by using an eigensensitivity method.

The problem of a structure with multiple cracks has received less attention due to the robust damage
assessment techniques needed, and only relatively few papers deal with the problem of multiple cracks
assessment for structures. Effectively, if the structure has multiple cracks, the identification procedure is more
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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complex due to the fact that the proposed damage assessment technique must estimate not only the crack
positions and depths, but also the number of cracks in the structure. As explained by Alvandia and Cremona
[2], usual vibration-based damage identification techniques may show less efficiency in the case of complex and
simultaneous damages.

The number of cracks present in a structure will usually be unknown for practical engineering applications.
So, the development of damage assessment techniques of multiple cracks may be very useful and of important
interest. For example, Khiem and Lien [3] used the dynamic stiffness matrix approach in order to detect not
only the crack position and depth, but also the quantity of possible cracks. But they indicated that the
obtained results show that the procedure developed works effectively only for measurement errors not
exceeding 7%. Ruotolo and Surace [4] proposed to identify multiple cracks by using the inverse problem as an
optimization task solved by means of a genetic algorithm. They validated this damage assessment technique by
considering both simulated and experimental data and demonstrated that this method permits assessment of
the number of cracks induced on the beam and can estimate the crack positions and depths with satisfactory
precision. Kisa and Gurel [5] used damage from changes in the natural frequencies and in the mode shapes of a
beam in order to detect an arbitrary number of cracks and the associated crack depths and positions. They
concluded that the modal data may provide useful information for multiple cracks detection with a reasonable
computational time. However, it may be remain that such methods are less efficient in the case of damaged
structures with measurement errors.

Chang and Chen [6] presented a damage assessment technique based on spatial wavelet analysis. The
positions and depths of the cracks are predicted with acceptable precision even though there are many cracks
in the beam. However, they indicated that the limitation of the proposed technique is that the crack cannot be
detected when the crack location is near the boundaries due to the fact that there are two peaks near the
boundaries in the wavelet plot.

In this paper, we propose to use the frequency response function (FRF) and the Constitutive Relation Error
updating method (the CRE updating method) that relies on a parametric model of the structure and the
minimization of a penalty function based on the error between the experimental data and the predictions from
the model. This method belongs to the model updating methods that minimize the discrepancy between the
test data and the model by modifying the numerical model. A state-of-the-art review of such updating
methods can be found in Ref. [7]. The ‘‘direct methods’’ [8,9] perform the corrections of the mass and stiffness
matrices of the model but do not unfortunately take into account the physical meaning of the modifications.
The ‘‘indirect or parametric methods’’ update models from changes of physical parameters of the model.
Three categories of cost functions can be used: the input residuals [10,11], the output residuals [12,13] and the
residual named the ‘‘CRE’’ which is used in this paper. It provides a measure of quality of the updated model
which is essential for model validation [14–17].

In this study, it will be demonstrated that the proposed assessment technique (the CRE updating method)
may detect not only the number of cracks but also the crack locations and depths, even if large measurement
errors (10% and 20% noise levels have been added to the simulations) and few sensors may be for the
identification procedure.

The paper is organized as follows. Section 2 summarizes the concept of the CRE updating method. Then,
the mechanical system with the transverse open crack under study is discussed in Section 3. The numerical
studies showing the application of the proposed damage assessment technique are also presented. Firstly, the
identification of the multiple cracks locations and depths are investigated by considering the FRF throughout
the beam, in one transverse direction and without noise on measurements. However, as previously explained
by Friswell [18], environmental effects may induce changes in the measured data that make damage assessment
very difficult. Moreover, one very difficult aspect of damage location is the number of the sensors. Considering
these two aspects of damage assessment, noise levels will be added to the numerical simulations, and only few
degrees of freedom will be used for the identification procedure. Finally, conclusions are given in Section 4.

2. The constitutive relation error method

The constitutive relation error updating method is one of methods used for validation in structural
dynamics problems. Its concept consists in using an a posteriori estimator and its efficiency has previously been
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shown [14–17]. The method is based on the Drucker error. In this section, we present the method for the case
of a general problem and it will be applied for vibrations of a simply supported beam in Section 3.

2.1. The construction of the cost function

Consider a structure of domain O (see Fig. 1) vibrating during a time interval t 2 ½0;T �. Displacements ud

and forces fd are prescribed on boundaries qO1 and qO2, respectively, besides we have qO1 [ qO2 ¼ qO. Plus,
forces fv

d are body forces in domain O.

The method consists in finding solution sðM; tÞ ¼ ðuðM; tÞ; rðM; tÞ;CðM; tÞÞ, M 2 O, t 2 ½0;T �, which verifies a
set of reliable equations and a set of less reliable ones. M is the position vector, u the displacement, r the
stresses and CðM; tÞ the forces. The reliable equations are the kinematic constraints and the equilibrium
equations. The less reliable equations will lead to the construction of the error, on which the minimization will
be done. The two constitutive relations are given by

r ¼ ðHþ ioBÞeðuÞ, (1)

C ¼ �ro2u, (2)

whereH and B are the Hooke’s and damping operators, e the strain tensor and r the density. It should be noted
that, since we consider in this paper only the case of forced vibrations problems, the equations are then written in
the frequency domain; o being the measure angular frequency. Besides, the solution is admissible (that verifies
the equations considered reliable). In the context of model updating, it is necessary to include data coming from
measurements. Again, these types of data are subdivided into two sets of equation: one reliable and one less
reliable. If we consider the case of a structure excited in one point on which displacements are measured at
different locations, the reliable group consists in o, the positions and directions of the excitations and sensors
whereas the amplitudes of forcesefd and displacement eud at the excitations and sensors points are considered less
reliable measurements. Then, the total error e2o consists in a term devoted to error on modeling z2o and another
term related to error on measurements Z2o. The problem to be solved is to find admissible fields s or equivalently
s0 ¼ ðu; v;wÞ where u; v;w are related to static (subscript s) and kinematic (subscript c) quantities by

uc ¼ u, (3)

rs ¼ ðHþ ioBÞeðvÞ, (4)

Cs ¼ �ro2w. (5)

The solution of the problem is obtained by minimizing the modified constitutive relation error e2o, a cost function
relating static and kinematic quantities [16], which is written, using u; v;w, such as

e2o ¼
z2o
D2

o

þ
r

1� r
Z2o, (6)
Ω

fd

ud
fd

v

∂2Ω

∂1Ω

Fig. 1. Domain studied and applied loads.
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with

z2oðu; v;wÞ ¼
Z
O

g
2

tr½ðKþ To2CÞ ð�ðvÞ � �ðuÞÞ%ð�ðvÞ � �ðuÞÞ�

þ
1� g
2

ro2ðu� wÞ%ðu� wÞdO, ð7Þ

and

Z2o ¼
kujq1O � eudk

2

keudk
2

þ
kfjq2O �

efdk
2

kefdk
2

. (8)

r is a weighting coefficient representing how much we trust the experimental data. Previous works [19] gave
r ¼ 0:5. Symbol % denotes the complex conjugate. f is the force vector. Denominator D2

o and norms used have
been chosen to ensure both error terms to have equivalent weights such as

D2
o ¼

Z
O

g
2
tr½ðHþ To2BÞeðuÞ%eðuÞ� þ

1� g
2

ro2u%u

� �
dO. (9)

Generally, we will use error quantities integrated over frequency range ½omin;omax�. They are denoted by a

subscript T and are calculated by using a weighting factor zðoÞ, verifying
Romax

omin
zðoÞdo ¼ 1 with zðoÞX0,

e.g. zðoÞ ¼ 1=ðomax � ominÞ. The modified error e2T is then given by

e2T ¼ z2T þ Z2T , (10)

in which

z2T ¼
Z omax

omin

z2o
D2

o

zðoÞdo and Z2T ¼
Z omax

omin

Z2ozðoÞdo. (11)

2.2. The updating method

For each frequency o, we have to solve the problem described previously. This is done through the
computations of z2T and e2T . Error in modeling z2T gives the relative quality (in %) of the numerical model with
respect to measurements over a frequency range and permits to decide whether the model updating is
necessary. The method consists in two steps. The first one, the localization step, selects the substructures
having a modeling error higher than a given value:

z2ETX
~dmax

E2E
z2ET , (12)

where E includes all the substructures and ~d is a given number.
The second step is the correction process during which error e2T is minimized by updating the parameters

from these substructures alone. Each step of the minimization needs to reassemble mass, stiffness and
damping matrices. For solving the nonlinear problem with respect to the parameters, we use a BFGS-based
minimization algorithm and gradients of parameters are calculated numerically. Once the correction has been
made, error z2T is calculated again. If its new value is smaller than a given level, then the updating process is
finished, if it is not, then a new iteration consisting of a localization step and a correction step is performed.

Let U, V and W be the vectors of the nodal values of the displacements fields u, v and w. Without loss of
generality, we will consider the case of a single excitation so that the measured displacements are normalized
by the amplitude of the force vector and consequently only the amplitudes of the displacements appear in the
expression of error on measurements Z2o. Then, the discrete form of the modified error is written as

e2oðU;V;WÞ ¼
g
2
ðU� VÞT%

ðKþ To2CÞðU� VÞ þ
1� g
2

o2ðU�WÞT%MðU�WÞ

þ
r

1� r
ðPU� eUÞT%GðPU� eUÞ. ð13Þ
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P is a projection operator which when applied to a vector Z gives the value of this vector at the sensors. The
error in measurements is quantified through matrix G. Previous works [20] showed the efficiency of the
following expression:

G ¼
g
2
ðkþ To2cÞ þ

1� g
2

o2m, (14)

where m, k and c are the reduced mass, stiffness and damping matrices of the system at measurement points,
respectively. Besides, the solution must be admissible that is it must satisfy

ðKþ ioCÞV� o2MW ¼ F, (15)

where F is the excitation force vector. Finally, minimizing error e2o is done under the admissibility constraints
and is obtained by introducing Lagrange multipliers which yields to the resolution of the following system of
linear equations:

AY ¼ B, (16)

where A, Y and B are written as

A ¼

g
2
ðKþ To2CÞ

1� g
2

o2M
r

1� r
PTGP

g
2
ðKþ To2CÞ

1� g
2
ðK� ioCÞ 0

�K� ioC o2M Kþ ioC� o2M

2
66664

3
77775, (17)

Y ¼

U� V

U�W

U

2
64

3
75, (18)

B ¼

r

1� r
PTGeU
0

F

2
664

3
775. (19)

3. Application on the identification of multi-cracks for a simply supported beam

3.1. Model of the multi-cracks beam

The layout of the system with multi-cracks under consideration is shown in Fig. 2. The system is composed
of a circular beam of radius R and length L simply supported at each end. All values of the physical
parameters are given in Table 1.

Using a finite element method, the circular beam is discretized into 30 beam finite elements, with four
degrees of freedoms at each node [21]. The axial and torsional degrees of freedom are not considered here. The
equations of the uncracked system can be written as

M €Xþ C _Xþ KX ¼ 0, (20)

where X is the vector of the degrees-of-freedom and dot represents the derivative with respect to the time.
Proportional damping matrix C can be expressed as C ¼ aMþ bK with a and b real constants.

Due to strain energy concentration in the vicinity of the tip of the crack under load, the presence of a transverse
crack introduces local flexibility. Mayes and Davies [22,23] proposed a theoretical model of a transverse crack,
by reducing the second moment of area of the element at the location of the crack by DI that is given by

DI ¼ I0
R=lð1� n2ÞF ðmÞ

1þ ðR=lÞð1� n2ÞF ðmÞ

� �
, (21)
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Fig. 2. Model of the simply supported beam with multi-cracks.

Table 1

Geometrical and physical parameters for the beam, frequency range of the study and nature of the excitation

Young modulus E (Pa) 2� 1011

Shear modulus G (Pa) 7:1� 1010

Density ðkg=m3Þ 7800

Poisson ratio n 0.3

Radius of the cross section R (m) 0.05

Length L (m) 1

Damping coefficient a 0.66

Damping coefficient b 1:2� 10�6

Frequency range (rad/s) ½100 25000�

Discretization of the frequency range (rad/s) 20

Location, directions of the excitation node 5, horizontal and vertical

Amplitude (N) of the excitation 1=
ffiffiffi
2
p

B. Faverjon, J.-J. Sinou / Journal of Sound and Vibration 312 (2008) 821–837826
where I0, R, l, and n are the second moments of area, beam radius, length of the section and Poisson’s ratio,
respectively. m is the non-dimensional crack depth and is given by

m ¼
h

R
, (22)

where h defines the crack depth of the beam, as shown in Fig. 2. F ðmÞ defines the nonlinear compliance as a
function of variations in non-dimensional crack depth m, which can be derived from a series of experiments using
chordal cracks (see Refs. [22,23]). At the location of the ith transverse crack, the stiffness matrix ½Ki

crack� is
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defined (with respect to the principal axes of the crack front) as

Ki
crack ¼

E

l3

12IX 0 0 6lIX �12IX 0 0 6lIX

12IY �6lIY 0 0 �12IY �6lIY 0

4l2IY 0 0 6lIY 2l2IY 0

4l2IX �6lIX 0 0 2l2IX

12IX 0 0 �6lIX

12IY 6lIY 0

Sym. 4l2IY 0

4l2IX

2
666666666666664

3
777777777777775

, (23)

where IX and IY are the new moments of inertia, about the parallel centroidal axes, due to the presence of the
cracked elements. They are given by [24]

IX ¼
R4

4
ð1� mÞð1� 4mþ 2m2Þgþ

a
2

� �
, (24)

IY ¼
pR4

4
þ R4 2

3
ð1� mÞg3 þ

1

4
ð1� mÞð1� 4mþ 2m2Þgþ sin�1ðgÞ

� �
� AX̄ 2, (25)

where A and X̄ 2 define the uncracked area of the cross-section and the distance from the axis X to the centroid of
the cross section

A ¼ R2 ð1� mÞgþ
a
2

� �
, (26)

X̄ ¼
2

3A
R3g3, (27)

where g is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� m2

p
for convenience. As illustrated in Fig. 2, a defines the crack angle and is given by

a ¼ 2 cos�1ð1� mÞ.

For a transverse beam with double-cracks, the global stiffness matrix ½Kcrack� due to the presence of the cracks
is given by

diagðKcrackÞ ¼ ð 0 � � � 0 K1
crack 0 � � � 0 K2

crack 0 � � � 0 Þ;

" "

ith element jth element

(28)

where K1
crack and K2

crack are the stiffness matrices that are associated with the first and second cracks,
respectively (as indicated in Eq. (23)). They are located at the ith and jth beam location. 0 defines the 8� 8 null
matrix.

Finally, the equation of motion for the simply supported beam with multiple cracks and excited by an
external force vector FeðtÞ ¼ Feiot (where F defines the force amplitude) can be written as

M €Xþ Ĉ _Xþ K̂X ¼ FeðtÞ, (29)

with

K̂ ¼ K� Kcrack, (30)

Ĉ ¼ aMþ bK̂. (31)

As indicated in Eq. (31), we assume that the presence of cracks affect the damping matrix via the stiffness
matrix.
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The response vector may be assumed as XðtÞ ¼ X0e
iot. Considering Eq. (29), the system governing the

equation in the frequency domain is given by

ð�o2Mþ ioĈþ K̂ÞX0 ¼ F. (32)

So, the identification of each crack location can be undertaken by considering this last relation and the use of
the CRE estimator. Eq. (15) particularized for the case of the beam uses stress and damping matrices K̂ and Ĉ

instead of K and C. Moreover, vector X0 in Eq. (32) will be either V (stress and damping terms) or W

(mass term) of Eq. (15).
Secondly, the calculation of the depth for the ith crack may be obtained by the minimization of the crack

depth error e2m (with respect to the non-dimensional crack depth m)

e2m ¼
X8
k¼1

X8
l¼1

ðKi
crack;kl � Kident;klÞ

2, (33)

where Ki
crack;kl and Kident;kl define the theoretical and identified flexibility coefficients, respectively.

3.2. Numerical results

In this paper, we chose to present the identification of different damage locations and crack sizes into the
beam described in Section 3.1 and whose properties are given in Table 1. Six cases were considered: cases 1–5
correspond to double cracks and case 6 to triple cracks. Details are presented in Table 2. It is known that the
identification depends on the informations available like the number, the location and the direction of the
sensors, the presence of noise on measurements. Several studies will show the robustness of the method
presented in this paper.
Table 2

Crack damage locations and depths for cases 1–6

Case Crack location 1 m1 Crack location 2 m2 Crack location 3 m3

1 10 0:8 15 0:5
2 10 0:1 15 0:3
3 10 0:5 15 0:5
4 4 0:7 23 0:4
5 9 0:5 7 0:6
6 10 0:8 15 0:6 25 0:7

2

4

6

0

10

20

30
0

0.5
1

Beam element
Ite

rat
ions

L
oc

al
 e

rr
or

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
x 1011

Non-dimensional crack depth μ

C
ra

ck
 d

ep
th

 e
rr

or
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Firstly, we consider the identification of the cracks for each case, the measurement information is given by
sensors throughout the beam and in one transverse direction, no noise is added. If the level of the model error
is above than a certain value then the updating method consists in a first step which is the localization step.
1
2

3

4
5

0

10

20

30
0

0.5
1

Beam element
Ite

rat
ions

L
oc

al
 e

rr
or

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
x 1011

Non-dimensional crack depth μ

C
ra

ck
 d

ep
th

 e
rr

or
Fig. 4. Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error for case 2 without noise on

measurements: (a) local errors; (b) crack depth error (�m1, �� m2).

1
2

3
4

5
6

0

10

20

30
0

0.5
1

Beam element
Ite

rat
ion

s

L
oc

al
 e

rr
or

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8 x 1011

Non-dimensional crack depth μ

C
ra

ck
 d

ep
th

 e
rr

or

Fig. 5. Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error for case 3 without noise on

measurements: (a) local errors; (b) crack depth error (�m1, �� m2).

1
2

3
4

5
6

0

10

20

30
0

0.5
1

Beam element
Ite

rat
ions

L
oc

al
 e

rr
or

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10 x 1011

Non-dimensional crack depth μ

C
ra

ck
 d

ep
th

 e
rr

or

Fig. 6. Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error for case 4 without noise on

measurements: (a) local errors; (b) crack depth error (�m1, �� m2).



ARTICLE IN PRESS

2
4

6
8

10

0

10

20

30
0

0.5
1

Beam element
Ite

rat
ion

s

L
oc

al
 e

rr
or

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12 x 1011

Non-dimensional crack depth μ

C
ra

ck
 d

ep
th

 e
rr

or

Fig. 8. Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error for case 6 without noise on

measurements: (a) local errors; (b) crack depth error (�m1, � � � m2, �� m3).

2

4

6

8

0

10

20

30
0

0.5
1

Beam element
Ite

rat
ion

s

L
oc

al
 e

rr
or

s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 1011

Non-dimensional crack depth μ

C
ra

ck
 d

ep
th

 e
rr

or

Fig. 7. Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error for case 5 without noise on

measurements: (a) local errors; (b) crack depth error (�� m1, �m2).

B. Faverjon, J.-J. Sinou / Journal of Sound and Vibration 312 (2008) 821–837830
Figs. 3(a)–8(a) present local errors at each localization step before each iteration of the updating process, for
the six cases. Clearly, each localization gives the element which has the highest local error and which
corresponds to the location of the crack. After the first localization, a minimization of the modified error is
made by changing only the parameters of the found element. It corresponds to the first iteration shown in the
figures. If the level of the model error is still higher than a sufficient value (leading to the convergence of the
method), another iteration is performed (localization plus minimization steps). Since we have multi-cracks,
another iteration is needed. The second one gives the element this time corresponding to the other crack of the
two existing for cases 1–5 (see Figs. 3–7) and a crack between the two others not yet found for case 6. Third
crack is obtained thanks to the third iteration (see Fig. 8). The computation stops when the value of the model
error is enough small. At each iteration, local errors are normalized by the maximum local error. Table 3
explains the updating process and gives model and modified errors before the first iteration and at the end of
the process. It clearly appears that the identifications of the multi-cracks locations are successively realized for
the six cases. Then, the crack depth identification is obtained by considering the minimization of the crack
depth error e2m as indicated in Eq. (33). The identified crack depths for the six cases are resumed in Table 4.
Perfect estimations of the crack depths are obtained in all cases.

Generally speaking, the identification of the cracks depends on the value of the normalized crack depth m
and on the crack location. Effectively, a crack with a high value of the depth will be classically easier to find
(for a given location of the crack). Moreover, the cracks will be more difficult to be detected if they are located
very close to nodes for the first eigenmodes (for a given normalized crack depth m).
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Table 5

Errors (in %) before (subscript i) the updating process and after the last iteration needed for convergence of the solution (subscript f), for

cases 1 and 6, with sensors located on 5 displacements: nodes 5, 10, 15, 20 and 25, and with various noise levels

Case Noise (%) z2T
i

e2T
i

z2T
f

e2T
f Iterations number

1 0 2.57 3.05 2:65� 10�6 3:40� 10�6 8

1 0 3:41� 10�4 3:98� 10�4 5 (intermediate step)

1 10 2.77 3.32 0.51 0.91 5

1 20 3.05 3.78 0.99 1.74 5

6 0 2.78 3.2 2:51� 10�5 3:68� 10�6 14

6 0 0.0072 0.0082 7 (intermediate step)

6 0 0.0019 0.0022 9 (intermediate step)

6 10 2.98 3.47 0.49 0.88 9

6 20 3.25 3.90 1.06 1.77 7

Table 3

Errors (in %) before the updating process (subscript i) and after the last iteration needed for convergence of the solution (subscript f) of the

updating process for cases 1–6 and measurements without noise

Case Noise (%) z2T
i

e2T
i

z2T
f

e2T
f Iterations number

1 0 2.63 3.71 1:06� 10�6 1:51� 10�6 7

2 0 0.40 0.59 1:65� 10�6 2:48� 10�6 5

3 0 1.36 1.91 2:84� 10�6 4:22� 10�6 6

4 0 2.16 3.03 0:97� 10�6 1:30� 10�6 6

5 0 1.60 2.27 4:99� 10�6 7:08� 10�6 8

6 0 3.12 4.46 4:28� 10�6 5:96� 10�6 11

Table 4

Comparison of the assumed and identified non-dimensional crack depths m for cases 1–6 without noise

Case Assumed m1 Identified m1 Assumed m2 Identified m2 Assumed m3 Identified m3

1 0:800 0:800 0:500 0:500
2 0:100 0:101 0:300 0:301
3 0:500 0:500 0:500 0:500
4 0:700 0:700 0:400 0:401
5 0:500 0:501 0:600 0:600
6 0:800 0:800 0:600 0:600 0:700 0:700
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For example, we can see on Fig. 3 (case 1) that the first detected crack is the one which is located in the tenth
element (near one node of the third mode) and the second one corresponds to the crack located in the fifteenth
element (near one node of the second mode). In this case, this is globally due to the fact that the primary
identified crack corresponds to the crack with the greater normalized depth m: the crack depth m1 of the first
crack (that is equal to 0:8) is greater than the crack depth m2 of the second crack (that is equal to 0:5). Similar
observations can be made for the cases 2, 4 and 5 which correspond to double-cracks identification. Moreover,
the same conclusions can be done for the triple-cracks detection, as indicated in Fig. 8(a). The three successive
identifications of the cracks locations begin with the greater normalized crack depth and finish by the smaller
normalized crack depth.

Finally, it may be observed that the first localization step can indicate the locations of the two cracks if the
effects of each crack are similar, as indicated in Fig. 5 (corresponding to case 3 with two cracks depths equal to
0:5). For cases 2 and 6 (see Figs. 3 and 8), all the cracks locations are visible at the first localization step even if
the local errors are predominant for the beam element corresponding to the greater depth crack.
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Experiments are frequently perturbed by noise measurement. To represent correctly this reality, we added
some uniform random noise on the previous deterministic computational experiments. The noise is uniformly
distributed in space and over the frequency range. Moreover, only few sensors are generally used to measure
the FRFs of the multi-cracks systems. Consequently, in order to demonstrate the efficiency and robustness of
the proposed method, we computed again cases 1 and 6 by considering experimental data that were carried out
through five one-directional displacements alone (instead of all the one-directional displacements along the
beam) and on which several noise levels were added: 0%, 10% and 20%.

Table 5 presents the results of the multi-cracks locations obtained for these cases: model and modified errors
before the updating process and after the last iteration. Figs. 9(a), (c) and (e) present the identifications of the
cracks locations with the associated local errors throughout the beam and at each iteration of the updating
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Fig. 9. Local errors of the 30 elements, normalized to the largest value, and evolution of the crack depth error for case 1 with

noisy measurements (a,c,e) Local errors with 0%, 10% and 20% of noise (b,d,f) Crack depth error with 0%, 10% and 20% of noise

(�� m1, �m2).
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process for case 1. The same results are shown in Figs. 10(a), (c) and (e) for case 6. Even if only few sensors are
available and noise measurement exists, it clearly appears that the final identifications of the multi-cracks
locations are again in perfect agreement with the assumed positions of the two and three cracks for cases 1 and
6, respectively. Then, the determination of the crack depth m of each crack is obtained by minimizing the crack
depth error function of Eq. (33). Results of the estimated crack depths are given in Table 6. Even if the
difference between the estimated and identified non-dimensional crack depths tend to increase by increasing
the noise levels, it may be concluded that the results are reasonably good. So it is demonstrated that the
damage detection of the multi cracks and the identification of the cracks size and position can be obtained
with satisfactory precision, even if 20% noise level has been added to the simulations, and less than 5% of the
degrees of freedom are measured.
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Table 6

Comparison of the assumed and identified non-dimensional crack depths m for cases 1 and 6, with sensors located on 5 displacements:

nodes 5, 10, 15, 20 and 25, and with various noise levels

Case Noise (%) Assumed m1 Identified m1 Assumed m2 Identified m2 Assumed m3 Identified m3

1 0 0:800 0:800 0:500 0:500
1 10 0:800 0:816 0:500 0:514
1 20 0:800 0:830 0:500 0:518
6 0 0:800 0:800 0:600 0:600 0:700 0:700
6 10 0:800 0:820 0:600 0:580 0:700 0:700
6 20 0:800 0:829 0:600 0:597 0:700 0:621
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Fig. 11. Comparison between the frequency response functions (vertical direction) of the cracked model (solid line), the initial model

(dashed lines) and the updated model (dotted–dashed lines with circle symbols), obtained at the beam’s element position 5, for case 1,

obtained from a computation without random noise and five sensors.
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Fig. 12. Comparison between the frequency response functions (vertical direction) of the cracked model (solid line), the initial model

(dashed lines) and the updated model (dotted–dashed lines with circle symbols), obtained at the beam’s element position 5, for case 1,

obtained from a computation with 10% of random noise and five sensors.
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Finally, the update model is shown through the FRFs (dotted–dashed lines with circle symbols) plotted with
the angular frequency in Figs. 11–13, for case 1, and for 0%, 10% and 20% noise levels, respectively. These
FRFs are compared to the assumed FRFs (solid line). Moreover, the FRFs of the uncracked system are
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Fig. 13. Comparison between the frequency response functions (vertical direction) of the cracked model (solid line), the initial model

(dashed lines) and the updated model (dotted–dashed lines with circle symbols), obtained at the beam’s element position 5, for case 1,

obtained from a computation with 20% of random noise and five sensors.
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Fig. 14. Comparison between the frequency response functions (vertical direction) of the cracked model (solid line), the initial model

(dashed lines) and the updated model (dotted–dashed lines with circle symbols), obtained at the beam’s element position 5, for case 6,

obtained from a computation without random noise and five sensors.
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presented (dashed lines). It is clearly observed that these FRFs are far from the FRFs of the system with multi-
cracks.

Considering the results presented in Figs. 11–13, the update model agrees very well with the assumed FRFs of
the system with multi-cracks for all these cases. However, we can notice that the discrepancy between the
estimated and assumed FRFs increases with the noise on measurements. Similarly, results on case 6 are available
in Figs. 14–16. The influence of the noise can also be seen on local errors (Figs. 9 and 10) which are smoothed
with the noise level increasing and on the value of errors before and after the updating process (as presented in
Table 5) which are higher compared to that from test data without noise. However, whatever the noise levels
presented here, the identification is done again successfully, which demonstrates the robustness of the method.

4. Conclusion

A non-destructive detection of double and triple open transverse cracks for a simply supported beam is
proposed in this paper. The damage assessment technique is based on the CRE updating method and a crack
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Fig. 15. Comparison between the frequency response functions (vertical direction) of the cracked model (solid line), the initial model

(dashed lines) and the updated model (dotted–dashed lines with circle symbols), obtained at the beam’s element position 5, for case 6,

obtained from a computation with 10% of random noise and five sensors.
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Fig. 16. Comparison between the frequency response functions (vertical direction) of the cracked model (solid line), the initial model

(dashed lines) and the updated model (dotted–dashed lines with circle symbols), obtained at the beam’s element position 5, for case 6,

obtained from a computation with 20% of random noise and five sensors.
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depth error function in order to detect and to identify the crack location and the non-dimensional crack depth
of each crack.

Moreover, it may be observed that the damage assessment technique permits assessment of the number of
cracks induced on the beam. In all cases, the identifications of the crack parameters are obtained with
satisfactory precisions even if 10% or 20% uniformly distributed random noise level is added to the
simulations, and only few degrees of freedom are available (less than 5% of the degrees of freedom of the
system).

Finally, the efficiency and robustness of this non-destructive detection method are demonstrated through
various numerical simulations in regard to the non-dimensional crack depth and the crack location. However,
this study demonstrates that the measured data should have a certain level of accuracy in order to allow a
correct damage detection.
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